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Abstract

This article develops a structural model for the dissolution of non-porous ore particles, referred to as “sporulation” kinetics. This model
is based on the assumption that the particulate can be modelled as an ensemble of reactive solid grains (e.g. metallic oxides) embeddec
into a solid matrix (gangue). The solid matrix may not be chemically inert with the result that, during the dissolution of the ore patrticle,
the solid matrix “sporulates”, i.e. grains of the reactive solid are progressively released from the ore particle into the liquid solution, due
either to mechanical fragmentation or to chemical dissolution of the matrix itself. This model is applied in order to interpret the dissolution
kinetics of manganiferous ores, which differs significantly from the corresponding kinetic behaviour of pugepsinicles.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction reactant within the solid pellet. Each of these properties
leads to a specific modelling since it influences the overall
Non-catalytic fluid—solid reactions are a class of industri- reaction evolution in a different way.
ally relevant operations whose structural properties of solid  Surface heterogeneity implies the occurrence of rough
particles influence and modify the reaction evolution. external surfaces induced, e.g. by the superposition and the
The overall evolution of the kinetics depends on several intermingling of crystallites and crystalline planes. Surface
concurring processes: (i) the reaction kinetics sensu strictoheterogeneity can be modelled either by means of fractal
and, specifically, the dependence of the dissolution ratesconceptg3,4] or by modifying the shrinking-core model in
on the concentration of fluid reactants; (i) transport effects order to account for the increase of the wetted surface in the
and mass-transfer limitations; (iii) the structural properties external layer.
of solid particles; and (iv) the occurrence of mechani- Particle ensemble properties refer to the occurrence of a
cal/dissolution processes leading to particle fragmentation spectrum of particle sizes. In the presence of a broad parti-
and break-up induced either by the mechanical stirring or cle size distribution, the evolution of the reacting system can
by the dissolution kinetics itse[f,2]. The latter two effects  hardly be modelled by lumping together the particle ensem-
depend on the polydispersity of the mixture, and influence ble and by considering an effective particle with an average
the dynamics of the particle distribution function during the radius. Indeed, the assumption of uniform particle size may
dissolution process. induce severe kinetic misinterpretation of the kinetic pro-
Within the broad category of “structural properties of solid cess, leading to gross scale-up processes, in the presence
particles” several features may be identified, which can be of a broad distribution of particle radi6—8]. This means
further classified into several subcategories: (i) surface het-that the particle ensemble should be described by means of
erogeneities; (ii) particle ensemble properties; and (iii) intra- a distribution function which is parameterised, e.g. with re-
particle heterogeneity in the spatial distribution of the solid spect to the particle radius and thus leading to a population
balance equation.
mpondmg author. Tels 39-06-445-85-892: .The third origin of hgterog.eneit.y _refers to _the spatial
fax: +39-06-445-85-339. distribution of the reactive solid within the solid particle,
E-mail addressmax@giona.ing.uniromadl.it (M. Giona). made by an inert matrix, within which reactive grains are
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Nomenclature

Greek letters

fragmentation rate

liquid reactant fA1: glucose;A»:
sulphuric acid)
fragmentation kernel

liquid reactant concentration
dimensionless liquid reactant concentration
(=ci/cs)

molar concentration of the solid reactant
referred to the liquid solution volume

V, seekEq. (37)

kinetic rate coefficient for the dissolution
of the metal oxide

kinetic rate coefficient for the dissolution
of the solid matrix

weight distribution function of oxide
grains within the ore particlen, (7o) drg

is the weight fraction of oxide grains of
radius in the rangery, 7o + dro] embedded
in the ore patrticle at time = 0)

solid matrix (gangue)

weight function of metal oxide embedded
in the ore particle up to the radiig

overall particle mass

average molecular weight of the ore particl
distribution function of oxide grains in the
liquid solution at timet (no(ro, t) dro is the
number of oxide grains possessing radius
betweerry andrg + drg at timer)
distribution function of ore particles in the
liquid solution at timer (np(rp, t) drp is the
number of ore particles possessing radius
betweerv, andrp 4 drp at timet)

number of ore particles

oxide grain radius at time

ore particle radius at time(Rp = rp(t = 0))
solid reactant

time

temperature

gangue volume within the ore particle at
timez (V§ = Vg(r = 0))

metal oxide volume within the ore particle
at timet (V9 = Vo(r = 0))

ore particle volume at time

t (V9 = Vp(t = 0))

solid reactant conversion

solid matrix (gangue) conversion

D

seeEq. (61)

dimensionless kinetic rate coefficient for
the dissolution of the metal oxide
dimensionless kinetic rate coefficient for
the dissolution of the solid matrix

r seeEgs. (40) and (62)
i parameter entering the distribution
(7o, p), SeeEq. (49)

n(r — /) unit step function

A seeEq. (70)

i stoichiometric coefficient of the dissolution
reaction of the solid matrixgq. (6)

2 seeEgs. (42), (45) and (69)

V; stoichiometric coefficient of the dissolution

reaction of the solid reactanEg. (1)

v(ro, rp)  distribution function of oxide grains within
the ore particle {(ro, rp)4nr§drpdro is the
number of oxide grains possessing radius
in the range o, o + drg] and embedded
in the volume &rgdrp of the ore matrix)

Py gangue density

Py gangue molar density

0o oxide grain density

Do oxide grain molar density

Pp ore particle density

Pp ore particle molar density

T dimensionless time

1) dissolution rate of pure reactant solid

particles Eq. (4)

Superscripts

av spatial average

stoic stoichiometric loading conditions

0 evaluated at time= 0

~ dimensionless variable (unless otherwise

explicitly stated)

embedded. Obviously, this situation cannot occur in the
case of solid particles made of pure reactant. The modelling
of this kind of heterogeneity, specifically oriented towards
gas—solid non-catalytic reactions has been extensively in-
vestigated by Szekely et 4B]. The approach envisaged by
these authors led to the conceptgplin models structural
models which account for the spatial distribution of solid
reactant within the pellet.

The grain model, in its classical formulation, refers to
porous particles in which the solid reactant, in the form
of spherical grains, is embedded within an inert matrix
which is permeable to the flow of gaseous reactants and
products. Therefore, the non-uniform (radial) distribution
of solid reactant modulates the interplay between intraparti-
cle diffusion of gaseous reactants/products and the reaction
occurring at the boundary of each grain. Grain models have
been successfully applied to several gas—solid reactions of
industrial interest (for a review s48]).

For initially non-porous particles, the crackling core
model proposed by Park and Levenspigl0,11] for
gas—solid reactions assumes that the reaction gas forces the
particle to develop a system of cracks and fissures, resulting
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in a grain material which is then easily penetrated by the Mathematical models can be conveniently subdivided into
reaction gas. Grains, generally assumed uniform in size,two main categories, depending on the type of heterogeneity
subsequently react via the shrinking-core model to the final that is accounted for.

product.

For what concerns liquid—solid systems, i.e. towards dis-
solution and leaching kinetics, intraparticle heterogeneity
induces many different and complex phenomenologies and
a structural model specifically suited for leaching kinetics
should take into account the fact that intraparticle hetero-
geneity may also play a significant role in non-porous par-
ticles, due to dissolution/break-up of the solid matrix, thus
exposing reactive grains to the liquid solution.

This article addresses a new model referred to as the
sporulation model, which is based on the assumption that,
during the dissolution/fragmentation of the ore particles, re-
active grains are released in the liquid phase.

This article is organised as followSection 2attempts a
classification of structural models for non-porous particles . . ,
in leaching processeSection 3describes the experimental on the concentranor_l O_f ﬂ.u'd reggtants; (i) transport effe_c s
set-up and the experimental observations on the dissolu—and mgss-transfer limitations; (iii) the structgral pr op_ertu_as
tion of manganiferous ores, motivating the formulation of of pa_rt|cle _ensembles expressed by t.he pa-rt|c|e distribution
the sporulation model. A thorough description of model funcn_on with respegt to the geqmetrlc rad|[ﬁs7,_12—15} .
assumptions and of its mathematical setting is developedand (v) the mgchan|calld|ssoluthn effects !eadlng to parti-
in Section 4 Section 5analyses the typical features of cle fragmentation and break-up induced either by the me-
the sporulation model through representative numerical chanical stirring or by _the d.'359|Ut!on klnet_lcs 'tS.Ele]'
simulations. InSection 6 the sporulation model is gen- Letn(r, .t) be the particle d|st_r|but|onfunct|on W'th respgct
eralised, to address the case of a non-uniform radial dis-©° the rad|usr,. S0 that.n(r, D d.r Is the number of solid parti-
tribution of reactive solid within the ore particle. Indeed, cles possessing, at timeradius betwegm andr + dr. qu.
Sections 4—6are devoted to present, in a classical frame- batch dissolution, under the assumption of perfect stirring,

work for chemical reaction engineering, a general ap- the population balance equation reads as:

proach towards sporulation modelling, by discussing first mrn 9

the homogeneous case and then by including the effect "~ + —{w[r, N3(®O]n(r, 1)}

of polydispersity of the solid mixture, of the ore particle or o

fragmentation and of a non-uniform radial distribution of = —a()n, 1) +/ a(p)b(r; p)n(p, 1) dp. (2
solid reactant within the ore particl&ection 7applies the 0

sporulation model to the dissolution of manganiferous ores. 1, functiona(r) is the fragmentation rate, ardr: p) the

number of fragments of radiusgenerated from a particle
of radiusp. By definition, the fragmentation kernélr; p)
satisfies the constrairii(r; p) = 0, for p < r, and the
mass-conservation conditigh,2]:

2.1. Ensemble heterogeneity

Let us first consider the case of pure reactive solids. In
this case, ensemble heterogeneity plays a leading role in the
evolution of the reaction, with the result that an accurate
model combines the kinetic information (rate of dissolution
associated witleq. (1)) and the mathematical description of
the possible fragmentation process, which in turn leads to a
break-up of the larger particles into smaller ones. This can
be achieved, within the framework of population balances,
by encompassing the physical processes affecting the over-
all reaction, i.e.: (i) the reaction kinetics sensu stricto and,
more specifically, the dependence of the dissolution rates

2. Structural models for the dissolution of
non-porous particles

This section attempts to classify the different structural 5 P 3
models able to describe the evolution of non-catalytic ” = / reb(r; p) dr.
liquid—solid reactions in the presence of non-porous pellets,
by focusing on the influence of ensemble and intraparticle Expressions for the rate of fragmentation and for the kernel
heterogeneity. b(r; p) can be found in the literatur@d,16].

Let us assume that solid pellets contain a reactive species The termw[r, N3(7)] is the dissolution rate, that is:
S which reacts with the liquid reactants; (i = 1,2) to -
yield the productP which dissolves into the liquid phase: @ olr, N3(®)], 4)

S(9) +v141(f) +v2A2(f) — P (f), 1) N L . .
which, in the most general setting, is a non-linear integral

wherey; (i = 1, 2) are the stoichiometric coefficients. The functional of the distribution functiom(r, 1), since it may

non-porous nature of the solid pellet implies that fluid reac- depend explicitly on its third-order moment:

tants do not penetrate within the solid particle, and conse- ~

quently reactiorf1) occurs exclusively at the external bound-  n,(7) — / 3, 1) dr. (5)

ary of the particles.

3)
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2.2. Intraparticle heterogeneity the formulation of a preliminary kinetic model considering
the following overall chemical reactid21]:
Intraparticle heterogeneity means that solid particles are
not exclusively composed by the reactanend indeed the ~ CeH1206 + 12MnG; + 24H"
solid reactant is embedded within a solid matrix formed = 6CO, + 12Mr?* + 18H,0, (7)

by chemical species not participating in the react{&h ) o )

solid matrix M may not be chemically inert. Indeed, it may tions. A shrinking-core model with a variable activation en-

participate in other dissolution side reactions, such as: ergy (the activation energy is assumed to be a function of the
overall conversion), was developed[#2]. This model can
M (S) + 242 (f) + uzAsz (f) — w(f), (6) be fitted successfully to the experimental data of manganese

) ) ) ) ) ) ) ore leaching obtained at different operating conditif#8,
in which one of the fluid speciedz, involved in the main  gjthough the functional form of the dissolution rate is rather

dissolution reactiorfl), takes part. IrEq. (6) u; (i = 2, 3) complex and the model contains many adjustable parame-
are the stoichiometric coefficients associated with this side tgrg.

reaction, and¥ (for “waste”) is the reaction product.
From the setting of the problem described earlier, it is 3 1 Materials and methods
clear that the central issue in the development of structural

models which account explicitly for intraparticle hetero- The manganiferous ore considered in this study comes
geneity resides in the interplay between the dissolution kinet- from an Italian mine located in North Latium and is pri-

ics of the solid reactarff and the dissolution/fragmentation marily made up of manganese as pyrolusite (MN@ an

of the n;atrixM »asa co;seql:]encl:_e 0; WT]iCh reacti\r:e Sig"g orthoclase matrix (KAISOg), as shown from XRD analy-
grains become expose t.o the liqui phase. It shou €sis reported in other studig4]. Manganese content was
observed that a quantitative mathematical description for j.tarmined by ore dissolution which was performed in a

this phenomen.on in the presence Qf non-porous particles ismicrowave digestion unit (MLS 1200 MEGA high perfor-
conceptually different from the grain models developed by mance microwave) using 0.1 g of solid, 6 ml HCI (37% RPE

Szgkel_y et al. fpr gas—solid rea_lctions of porous particle_s, in Carlo Erba Reagents) and 2ml HF (40% RPE Carlo Erba
w_hlch mtrapamcle.hetgrogenelty was essentially assomatedReagentS): the final solution was analysed by an induc-
with intraparticle diffusion. _ tively coupled plasma spectrophotometer (ICP) to determine
Thg sporulgtlon model, Wh'Ch W'"_ be developedlln the the weight percent of the main elements present in the ore
fO”Ong sections, Is specm_cally suited fo accounting for [24]. Leaching tests of manganiferous ore were performed in
the mtrapartlcl_e hete_rogenelty, by_ describing the '”terP'ay cylindrical jacketed vessels (borosilicate glass, 200 ml) with
be_tween the dlss_olut|0n of the solid reactant and the dlsso-rounol bottom and upper opening for sample collection. Each
lution of the matrix. ) L leaching test was carried out under magnetic stirring and
Model .development is precede(_d by a short descrlp.tlon_ of 4t selected constant temperature (30, 50 antCJ@using a
the phy§|caI problems and experimental results motivating digital bath with a circulating pump (LT5 IKA Labortech-
the basic model assumptions. nik). The reductive leaching process was carried out in sul-
phuric acid media (ISOs 96% ISO for analysis, Carlo
Erba Reagents) using glucoseif-glucose anhydrous, 96%,

3. MNOg2 dissolution: experimental observations Sigma—Aldrich) as a reducing agent according to the global
stoichiometry of the reaction reported k. (7)

As a test case let us consider the dissolution kinetics of We made use of a small reactor in order to ensure a good
manganiferous ores. The recovery of metals and particularly level of homogeneity of the liquid—solid solution with the
of manganese from mineral ores is an important industrial simple use of a magnetic stirrer. Different experiments have
issue. A series of hydrometallurgical processes have beerbeen performed for increasing stirring speeds confirming
developed both with and without reducing agents. One of that : (i) a good level of homogeneity of the liquid—solid so-
the processes developed makes use of sacchariferous reduddtion is attained; and (ii) mechanical fragmentation effects
ing agents (glucose in the present analysis). Recently, bi-are indeed negligible.
oleaching of manganese by iron-oxidising bacteria has been Leaching test were performed in different loading condi-
addresse(i17,18] Leaching kinetics of manganiferous ore tions considering the global reaction reportecEi. (7)as
(pyrolusite) have been considered by several aufi®r20] a reference: in particular, leaching tests at different temper-

Manganese extraction using carbohydrates as reducingatures were performed in stoichiometric conditions of both
agents consists of a complex network of chemical reactionsacid and glucose, with an excess of acid and stoichiomet-
involving partially oxidised products derived from carbohy- ric glucose, with stoichiometric acid and an excess of glu-
drate degradation in acidic media. The manifold of interme- cose and with stoichiometric acid in the absence of glucose
diates and their variability with carbohydrate sources led to (seeSection 3.2for a detailed discussion of the meaning
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of the different loading conditions). During each leaching 1

test different samples of both leach liquor and solid residual d

ore were collected to determine Mn extraction and particle 09} e,

size distribution respectively. Solid—liquid separation was - *:Saeﬂ“
performed by centrifugation (Chermle Z380) for 10 min at I 08 . ot a
8000 mirrL. Liquid samples were diluted with a HNG0- f i

lution in distilled water (0.01 M) and then analysed by ICP to = 07l

determine Mn concentration. A laser diffraction equipment ' b
(Helos Sympatec, FR Germany) was used to determine the

particle size distribution in the liquid phase of different ore 08— 20 30 40
samples which were collected during the leaching and then t[h]

washed and stored in distilled water. Higher solid concen- Fio 1 1mi ¢ sulbhuric adid e he disolution of
- : . - : . _ Hg. 1. Influence or sulpnuric acid concentration on the aissolution O
trat!ons n the. liquid suspension were employed in the ex pure MnO; particles. Conversion-time curves (1 — X (1))Y/2 vs. 1 (h). Set
perlme_nts malnly d(_avot_ed to investigate .the time evolution (a) refers to stoichiometric loading conditions of glucose &1(0) = vy: (L)
of particle size distribution. All the experiments have been soichiometric loading of sulphuric acid #2(0) = v2; (A) 30% surplus
repeated three times in order to ensure the reproducibility of of sulphuric acid ¢2(0) = 1.3v2. Set (b) refers to 50% glucose surplus
the data and the negligible influence of sample collection. ¢1(0) = 1.5v.: (®) stoichiometric loading of sulphuric acid ¢2(0) = vz;
Experiments have been also performed with Mrp@rti- (©) 50% surplus of sulphuric acid ¢3(0) = 1.5v,.
cles, purchased from Sigma—Aldrich (60—230 mesh, purity
99%) at 90°C. Below 90°C, the conversion achieved after

loading for glucose (¢1(0) = v1), by keeping sulphuric acid
40h is too low to have any practical interest. g7or g (€4(0) = va), by keeping sulp

under stoichiometric loading (¢2(0) = v2), and in the case of
a30% surplus (c2(0) = 1.3vy) (dataset (a)); for 50% glucose
surplus (¢1(0) = 1.5v1), under stoichiometric (¢2(0) = vy),
) _ L and 50% surplus (¢2(0) = 1.5v,) of sulphuric acid (dataset
Athorough understanding of ore leaching kinetics is made

complex by the structural properties of the particles and Asurplusof sulphuric acid, the other operating parameters
by the spatial distribution of Mn@crystallites within the being fixed, does not increase the overall conversion so that

amorphous solid matrix. In order to achieve a better under- for pure MnO, particles, it can be reasonably assumed that
standing of the kinetics underlying the reaction described by the dissolution rate is ir;dependent of the concentration c»
Eq. (7) it is_ useful to consider the leaching process of pure of HpSO4. The data of pure MnO; dissolution refers to the
MnO; partples. o , temperature T = 90 °C, since below 90°C, the conversion

By referring toEqg. (1) let us indicate glucose with1 and achieved after 40 istoo low to have any practical interest.
sulphuric acid withA,, so that the stoichiometric coefficients Let us now consider the dissolution kinetics of mangani-
arevy = 1/12 andv = 1. ferous ores, made by MnO, grains (S, weight fraction 0.15)

Velardo et al[5] recently analysed dissolution kinetics of embedded in the solid matrix (M, weight fraction 0.85). Let
pure MnQ in acidic medium and in the presence of glucose | indicate the conversion of Mn’OZ grains with X('t). '

as the reducing agent, showing that: (i) the kinetic rate does The overall conversion—time curves X (1) versus  are de-

not qepeng S|gn|f|cantly on the concentration of sulphuric picted in Fig. 2A—C, for three different values of the tem-

acid; and (ii) the dissolution rateentering the balance equa- erature T = 30, 50, and 70°C (curves (a)<(c), respec-

tion can be expressed by means of the following expression:tively) and for different loading conditions. Fig. 2A refers

w = —koclt, (8) to the loading condition:2 ¢1(0) = vy and &(0) = v, while
) ] Fig. 2B refersto ¢1(0) = v1 and ¢2(0) = 1.3vy.

wherecs is glucose concentratio, the rate constant and The results depicted in these figures lead to the following

n1 = 1.2. The fact that the dissolution rate is practically ,pearyations: (i) the dissol ution rateincreases monotonically
unaffected by the sulphuric acid can be observed from the ;i temperature (Fig. 2A): (ii) the conversion-time curves

data depicted ifrig. 1awhich shows the experimental results 4\ rate towards a limiti ng value Xs ~ 0.83 < 1 that does

for the conversion-time curves — X (1)*/° versus atT = not depend on temperature (Fig. 2A); (iii) the dissolution
90 °C for several loading conditiorisunder stoichiometric

3.2. Manganiferous ores versus pure Mn@issolution

where X is the solid reactant conversion. Therefore, in the case of pure
MnO; particles, for stoichiometric loading condition for the fluid reactant
Ay (or equivaently for A,) we mean ¢1(0) = Efdc = vy, SO that ¢1(1) —
0for X — 0. The concept of “surplus’ of afluid reactant is referred to its
molar content with respect to the stoichiometric loading, so that a loading
condition of 30% surplus of glucose means that ¢1(0) = 1.3E§‘°i° = 1.3v;.

2 In the case of ore particles, the stoichiometric loading condition for
B al . B o A1 = glucose corresponds to ¢1(0) = v1, while for A, = sulphuric acid
= s 1(0) — v1 X, c2() = —— =2(0) — v2X, corresponds to ¢2(0) = vz + fi2 (see Section 5).

cs

1 The loading conditions of fluid reactants can be expressed in terms of
the dimensionless concentratiohg0) = ¢1(0)/cs andc2(0) = ¢2(0)/cs,
wherec1(0) andc,(0) are fluid reactant concentrations at time: 0 and
cs = ng/V is the molar concentration of the solid reactant referred to
the liquid solution volumeV. In the case of pure Mnparticles, fluid
reactant concentrations evolve in time according with the equations:
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A) 0 4 8 12 16 20 24

)

©

t [h]

Fig. 2. Conversion-time curves X(f) vs. ¢ (h) for manganiferous ore
particles for three different values of the temperature 7 = 30, 50, and
70°C (curves (a)—(c), respectively) and for different loading conditions.
Continuous and dotted lines are the predictions of the “homogeneous’
sporulation model (see Section 7). (A) Loading conditions ¢1(0) = v1 and
¢2(0) = vp. (B) Loading conditions ¢1(0) = vy and ¢2(0) = 1.3vy. (C)
Open circles and dotted lines refer to the loading conditions ¢1(0) = v
and ¢(0) = vy; open circles and continuous lines refer to the loading
conditions ¢1(0) = 1.3v1 and ¢2(0) = vy.

rate increases monotonically with the concentration of the
sulphuric acid (Fig. 2B); and (iv) after 8h, for ¢2(0) =
1.3vy, the conversion is aready significantly higher than the
limiting value X, obtained for ¢2(0) = v, (Fig. 2B).
These experimental observations indicate that a chemical
dissolution of the solid matrix (gangue) occurs for mangan-
iferous ores due to the presence of sulphuric acid, and this
phenomenon speeds the leaching process up significantly. In
point of fact, the chemical dissolution of the solid matrix,
together with mechanical stirring, enhances the release of
oxidereactive grainsfrom the matrix into the liquid solution.

In other words, sulphuric acid acts as a fluid reactant for
the dissolution of both oxide grains and the solid matrix. For
this reason, in the case of manganiferous ore particles, the
sulphuric acid loading condition ¢2(0) = v2 does not repre-
sent the “ stoichiometric” loading, because of the occurrence
of the side reaction of solid matrix dissolution, which con-
sumes sulphuric acid. That is the reason why, for ¢2(0) =
v2, the oxide grain conversion saturates towards a limiting
value Xg < 1.

The fact that the sulphuric acid is the limiting reactant,
is confirmed by Fig. 2C, which depicts the influence of ini-
tial glucose concentration ¢1(0). Fig. 2C shows the overall
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Fig. 3. Granulometric data for a leaching experiment of manganiferous
ores in the absence of the reducing agent (glucose) for 7 = 90°C and
¢2(0) = vp. Histograms show the weight fraction of particles possessing
radius between r and r + Ar. Parts (A)—C) refer to three different time
instants, r = 0, 8 and 24 h, respectively.
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conversion—time curves X (¢) versus ¢ for two different val-
ues of the temperature T = 30, and 70°C, and for different
loading conditions. Open circlesrefer to stoichiometric load-
ing condition for glucose ¢1(0) = v1 and ¢2(0) = v». Filled
circles refer to a 30% surplus of glucose ¢1(0) = 1.3v1 and
¢2(0) = v2. Ascan be observed, the dissolution rate slightly
increases for increasing values of ¢1(0), but the saturation
value of the conversion is practically unaffected by the glu-
cose surplus. This confirms that glucose is not a limiting
reactant.

The fact that the solid matrix undergoes a dissolution pro-
cess is confirmed by granulometric data reported in Fig. 3,
showing the particle weight fraction possessing radii be-
tween r and r + Ar, a three different time instants, ¢+ =
0, 8, 24h. The granulometric data depicted in Fig. 3 re-
fer to an experimental run in the absence of glucose and
in the presence of the sulphuric acid. In the absence of
the reducing agent (glucose) oxide grains do not dissolve
and the time evolution of the particle distribution function
(the weight fraction of particles characterised by smaller
radii is increasing in time) is exclusively due to the disso-
lution/fragmentation of the solid matrix in the presence of
sulphuric acid and mechanical stirring.

Different experiments, performed for increasing stirring
speeds (not reported here), support the idea that fragmenta-
tion effects are indeed negligible with respect to solid matrix
dissolution. No agglomeration or coating of larger particles
can be hypothesised from the analysis of granulometric data.

4. Sporulation kinetics: model description

The experimental results depicted in Figs. 1 and 2A-C,
indicate that the leaching process of manganiferous ores is
significantly more efficient than that of pure MnO» parti-
cles. The difference is at least one order of magnitude in
the time-scales. for a given conversion, say X = 0.5, it lasts
more than 40 h for the pure mineral while it takes about 1 h
for the ore. The comparison is kinetically fair, since both
minera and pure MnO, particles possess approximately the
same granulometry. Moreover, granulometric datafor an ex-
perimental run in the absence of glucose (Fig. 3) shows that
ore particles undergo dissolution even in the absence of ox-
ide grain dissolution.

The structural model discussed further, and referred to as
sporulation modelis grounded on these experimental obser-
vations. In the light of the case study discussed in Section 2,
we will use the wording “metallic oxide”, or “oxide” to in-
dicate the reactive solid S, undergoing dissolution.

The mechanism underlying the sporulation model is de-
picted in Fig. 4. The ore particle contains smaller grains of
the metal oxide that, due to dissol ution/fragmentation kinet-
ics of the solid matrix (gangue), are progressively released
into the liquid phase. Thisimpliesthat the sporulation model
explicitly considers the interplay between oxide and gangue
dissolution, by assuming that the dominant phenomenon

controlling the process is the release of oxide grainsinto the
liquid phase.

The sporulative release of solid grains within the liquid
phase increases the wetted surface of the solid reactant S
exposed to theliquid, thus enhancing the dissol ution process.
Ore particles and oxide grains are assumed to be spherical.

In order to simplify the treatment, the ore particle den-
sity pp, and consequently the particle molar density pp =
Pp/MW,, is assumed to be constant during the dissolution
process. This implies that the metal oxide is uniformly dis-
tributed within the solid matrix. The more general case of
a non-uniform radial distribution of metal oxide within the
matrix is addressed in Section 6.

Following Eq. (6), the dissolution of the ore matrix M

can be expressed by the equation:
_ ay
g = ~ko(Dgp(cz. c3)5p. 9

where V,, and Sy are the particle volume and particle sur-
face, respectively, kp the kinetic rate coefficient (which may
depend on temperature 7)) and gp a function of the concen-
trations ¢, and c3 of the reacting species A, and Az within
the liquid solution. The assumption of sphericity leads to:

drp

o5 = ~Pe(Deplc2, ca), (10)
where By = kp/pp, and rp is the particle radius. Likewise,
the dissolution kinetics for the solid reactant S (oxide grain),
according to Eq. (1), reads as:

d
&0 (Dol c2), (1)

dr
where rq is the oxide grain radius, 8o = ko/po, ko(T) the
kinetic coefficient of the dissolution rate of the metal oxide,
and go(c1, ¢2) afunction of the concentrations ¢; and ¢y of
the reacting species A1 and A» in the liquid solution.

The distribution of oxide grains within the ore particle is
described by the function v(ro, rp) representing the number
of oxide grains per unit radius ro and per unit volume of the
ore particle, i.e. v(ro, rp)4nr§drpdro is the number of oxide
grains possessing a radius in the range [ro, ro + dro] and
embedded in the volume 4rr2dry of the ore matrix.

Let no(ro, ) be the number of oxide grains per unit ra-
dius ro in the liquid solution, so that nq(ro, f) drg is the
number of oxide grains possessing a radius between r, and
ro+ dro. Two cases should be discussed separately, depend-
ing on whether ensemble heterogeneity (referred to as the
granulometric distribution of ore particles) is accounted for.
Let us first consider the case of a uniform ensemble of ore
particles, possessing the same initial radius Rp,.

The evolution equation for ng(ro, ) is simply given by
the population balance:
on 0 n dv,

R Ta s U
= NpBpgpSpv(ro, rp), (12
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Fig. 4. Schematic representation of the “release” mechanisms of oxide grains from the ore particle into the liquid solution, characterising the sporulation

model.

where Np is the number of ore particles:
M
Np=—L. (13)
lOpr

My the overall particle mass, and V) = 47 R3/3intheinitial
particle volume. Egs. (10) and (12) define the sporulation
model in the case of a uniform ore-particle mixture. The
initial condition for nq(ro, f) can be assumed as follows:

I’lo(ro, O) = 0, for a“ o, (14)

which implies that no oxide particles are dispersed within
the liquid phase at the beginning of the process.

In the case of a polydisperse mixture of solid particles,
it is necessary to introduce a distribution function np(rp, 1)
representing the number of ore particles per unit radius rp,
So that:

is the number of ore particles at time 7. The distribution
function np(rp, 1) satisfies the balance equation:

% _ [ Bpgpnpl _

o, 16

starting from a given initial distribution np(rp, 0) = ng(rp).
Eq. (16) is a population balance accounting exclusively for
the chemical dissolution of the ore particles. In the presence
of significant ore particle fragmentation, Eqg. (16) modifies
as follows:

% _ a[,Bpgp”p]
3t 8rp

= —a(rp)np + /0 a(r;))b(rp, r,/))np(ré,, 1) dr;), 17

where a(rp) is the fragmentation rate and b(rp, ré,) the frag-
mentation kernel. Unless otherwise stated, we assume here
that fragmentation effects due to mechanical stirring and
abrasion are negligible so that Eq. (16) is the population
balance for np(rp, 1).

The inclusion of ensemble heterogeneity within the
sporulation model forces to modify the population balance
Eqg. (12) for no(ro,t) accordingly, and the result is the
following eguation:

% . [ Bogono]
at 8}’0

o
- /O np(rh, ) Bpgpdm(ry) ?v(ro, rp) dr,. (18)

In the case of a homogeneous ore particle popul ation:
np(rp. 1) = 8(rf — rp(1)), (19)

where rp(?) isthe solution of Eq. (10), and Eq. (18) reduces
to Eqg. (12). This article mainly addresses the influence of
intraparticle heterogeneity and its description by means of
the sporulation model proposed. Consequently, we will con-
sider the case of a homogeneous ore particle distribution
even though the inclusion of ensemble heterogeneity does
not modify the fundamental architecture of the model as it
can be shown by Eq. (16).

The functions and coefficients characterising the sporula-
tion model are not completely arbitrary sincetheir functional
form and value should be consistent with the overall mass
balance. The assessment of the overall mass balance induces
quantitative constraints on the function v(ro, rp). Firstly, it
is reasonable to assume that:

U(ro, rp) = 0, for Fo > rp, (20)
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since an ore particle cannot inglobe an oxide grain of larger
radius.

The physical constraint on v(ro, rp) isobtained by enforc-
ing that the initial mass of an ore particle ,opVF? equals the
mass of the oxide grains and the mass of the matrix, that is:

ppVg = poVg + pgVg = (po — pg) Vg + pgVy» (21)

where po and pg are oxide and gangue (matrix) densities,
and V3, Vg the oxide and gangue volumes within the initial
ore particle. From physical arguments, the densities po, pg
and pp satisfy the following inequality:

Pg < Pp < Po- (22)
Eq. (21) can be reformulated as follows:

Rp 7l 4
_ VO /0 dr(r)? dirp /0 oo g, (29

which is an integral constraint on v(rg, rp).

It is important to observe that it is possible to derive an-
other more strict inequality for v(rq, rp) by assuming the
“homogeneity hypothesis’, that is, during the dissolution
process of the ore particles, the particle density pp remains
constant.

Under this hypothesis Eq. (21) can be extended to any
time instant ¢, so that:

Vo(1) _ V_é) _ Pp— Py
Vo () V,? Po — Pg
= (op — pg) Vp(®) = (po — pg) Vo(1), (24)

where V,(¢) is the total volume of oxide grains embedded
in the ore particle at time ¢+ when the ore particle volume is
Vo(f) = (4/3)nr3(t). Eq. (24) can be further rearranged, by
replacing Vo(7) withitsintegral expressioninwhich v(ro, rp)
enters explicitly:

7o) IN2 A,
(Pp - Pg) /(; 47T(rp) drp

rp(0) ré)
z%_wﬁ %@%#Awh@wwﬁ%,

(25)
i.e
rp(?)
47(r))?
[ e
rb / 4 3 ’

X (Pp_Pg)—(Po—pg)/(; v(ro, rp)én'rodro drsz.
(26)

Since Eqg. (26) should hold true for any time instant, i.e. for
any rp(t), it follows that:

Pp — Pg
Po — Pg

It is important to observe that while Eq. (23) is an inte-
gra condition deriving exclusively from a material balance,
Eq. (27) derives from the physical assumption of homogene-
ity.

In Section 5, we enforce Eq. (27), that is the “homo-
geneous congtraint”, to address the salient features of the
sporulation model. The more general case in which the ef-
fective particle density may change during the dissolution
process, is addressed in Section 6.

L et us conclude this presentation of the sporulation model
by considering the explicit expression for the overall con-
versions X and Y of the main reactant S (i.e. of the metallic
oxide) and of the solid matrix (gangue), respectively. The
metal oxide conversion X (¢) at any timer is given by:

rp(?) 4 3
/0 v(ro, p) :—%rrro dro = (27)

X (t) = 1 — [fraction of oxideat time embedded within
theoreparticle]
— [fraction of oxideat timer containedin
thereleased graing], (28)

so that X (r) attains the form:

R
Vo) Jo " no(ro, t)%nrg dro

Xt=1-

(29)

Analogously, the conversion Y of the solid matrix attains the
form:

Vo () — Vo(®)

Yy =1-
Q-

(30)
The generalisation of Egs. (29) and (30) to a polydisperse
mixture of ore particles is straightforward.

Inthe case of pp isconstant during the dissol ution process,
Eq. (24) holds true so that:

O[3 no(ro. H(4/mrddro
R3 1%

ra)

R3S’

X(n)=1-

b

Y=1- (31)

The potentialities of the sporulation model are discussed in
detail in Section 5 where the “homogeneous’ sporulation
model is compared with the classical shrinking-core model
in the case of zero- and first-order dissolution kinetics.

5. Model analysis and simulations

Without loss of generality, we consider the simplified re-
action scheme:
S () +v1A1 (F) +v242 (F) — P (D), (32

M (8) + u242 (f) > W (), (33)
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with the functional dependencies of the rate coefficients:
go(c1, c2) = 1, (34)

i.e. we assume that the reaction rate of oxide grains kogo(c1)
is independent on the concentration of the fluid species Ao,
which is responsible for the dissolution of the solid matrix
accounted for by the reaction rate kpgp(c2).

By introducing the dimensionless variablesand parameters:3

gp(c2) = 32,

- rp - o t Rp
p= 5> ro = —, = -, 9:—"2,

Rp Rp 6 Bres
a=2  &=2 (35)

cs cs
- - Rp
no(ro, T) = no(roRp, 10) —,

Np
V(7o, '~’p) = V("oRp, ”pRp)R,i (36)
PR S I
— 0o — — » )
P Pp Po ,3p

NppoV2

cs = P20, (37)

the “homogeneous’ sporulation model developed in
Section 4 (uniform ensemble of ore particles and constant
particle density pp) attains the form:

) = —[c2(D]"2,

WMo _ gy 2 4 [ep(o)]24xi 2o, 7o)
at o prvoTRh
flo(;o, O) = 0, (39)

where the dimensionless distribution (7o, 7p) setisfies the
integral constraint:

Pp— Py
Po — Py
According to the reaction scheme Egs. (32) and (33), the

fluid reactant concentrations ¢1 and ¢, can be expressed with
respect to the conversions X (1), Y(t) as.

p 4
/ D(Fo, Fp) =770 A = (40)
0 3

¢1(1) = ¢1(0) — v1 X (1), (41)
c2(7) = €2(0) — 12X (1) — f12Y (1), (42
where

[ fio(Fo, T)(4/3) 73 dFg
Ve

X()=1-7F30) — , (43)

3 The reference concentration cs is the ratio between the total number
of moles of metallic oxide S embedded in the ore particles and the volume
V of the liquid mixture (supposed to be constant during the dissolution
process). In other words, cs is the maximum concentration of recovered
metal P in the liquid solution that can be obtained from a complete
dissolution of the ore particles and of the oxide grains.

Y(1) = 1— 7300, (44)
- 0

=PV _

fz= = (Vg 1) , (45)

VO Jo Aty 7y fo 0G0, 7p) (4/3)73 dio
Ve (4/3)

Pp— Py
Po — Pg

(46)

The stoichiometric loading conditions for fluid reactants
¢1(0) and ¢2(0) (for a complete dissolution of the solid ma-
trix and of oxide grains) read as:

¢1(0) > &9¢ = vy, 22(0) = &9 = vy + 2. (47)

In order to fully specify the sporulation model, we need to
define the functional form of the oxide grain distribution
(7o, p). In order to satisfy the integral constraint Eq. (40)
we define:

V(7ro, p) = v(Fo, ) 1(7p), (48)
where (7o, 7p) could be a generic function, such as:
P! exp[—¢ao]
X exXp[—¢3ip] (Fp — 7o),
0, for 7o > 7p,
(49)

‘A)(;o, ;:p) = fOI’ ;0 < ;p,

and I'(rp) is defined by the integral constraint Eq. (40):
-1

.. Pp—Pg /?pw 4 5
I'(ry) = ——= V(Fo, I'p) =7re dF, . 50
(p) po—pg|:o (ro p)3 0 dro (50)

The functional form Eq. (49) for (7o, 7p) isvery flexible for
reproducing different physical situations. In fact, the phys-
ical properties of the interparticle structure associated with
the functional form of (7, 7p) can be interpreted more
conveniently by considering the quantity mq(7o), which is
the weight distribution function of oxide grains within the
ore particle. Consequently, mq (7o) dig represents the weight
fraction of oxide grains of radius in the range [7o, 7o + dFo]
embedded in the ore particle at time r = 0. The behaviour
of mq (7o) iscontrolled by the distribution function v (7o, ),
since:

1
mo(Fo) = Viggnfg /0 D(Fo, Fp)drmFs dFp. (51)
Fig. 5 shows the behaviour of mq (7o) for the distribution
(o, Fp) given by Egs. (48)—<50) with ¢; = 1, {3 = 0 and
for different values of the parameter ¢ = 1, 10, 30, 50, and
100. For increasing values of the parameter ¢2, the average
radius of the oxide grains moves towards lower values of
Fo. Thisimplies that, when the ore particle “ sporulates’ and
oxide grains are released into the liquid solution, the contact



A. Adrover et al./Chemical Engineering Journal 99 (2004) 89-104

20

15+

10 | d

mg(F)

Fig. 5. Weight distribution function of oxide grains within the ore particle
mo (7o) for D(7o, 7p) given by Egs. (48)«50) with ¢1 = 1, 3 =0 and for
different values of the parameter ¢,. (a) &2 = 1; (b) 2 = 10; (C) &2 = 30;
(d) 2 = 50; (€) &2 = 100.

surface between metal oxide and liquid reactant increases
for increasing values of ¢». The obvious consequence on the
time behaviour of oxide conversion is that X () exhibits a
faster increase for increasing values of ¢> as will be shown
in Section 5.1, where the response of the sporulation model
is analysed in the cases of zero- and first-order kinetics for
the consumption rates of the solid matrix and oxide grains.

5.1. Zero- and first-order kinetics

In the case of zero-order kinetics for the consumption
rates of the solid matrix and oxide grains (n1 = 0 and no =
0), the sporulation model can be solved in closed form, thus
obtaining:

- 1-7, 0<t<]1,
o= {57 05; (=2
~ o~ _ 1 ! ~ o~ ’ NP
no(Fo, T) = — fGg, ip(t — ) — ') dry,
B Jr,
= ;6;70, (53)
B
1
08 r
3 06F
x
=) 04 r
02+t
0 . -
(A) 0 2 4 6 8 10

T

99
where
f(Fo. Fp(1)) = 475 (1), D(Fo, Fp(D)), (54)
/ Oa 0 — /a
n(f—r)={1’ f;;fr (55)

Fig. 6A and B show the behaviour of the conversion-time
curves (1— X (7))Y/3 versus t for 8 = 0.1 (Fig. 6 A) and 8 =
1 (Fig. 6B) and for three different values of the parameter
£2 = 1,10, 100 entering the distribution function v(7o, 7p)
(Egs. (48)—50)). We prefer to represent the conversion-time
curves as (1— X)/3 versus time for graphical reasons, in or-
der to emphasise the difference with respect to the linear be-
haviour (1 — X (1))Y/3 = t/B (dotted curves) characterising
the classical shrinking-core model in the reaction-controlled
regime (for a zero-order kinetics).

From Eq. (52), it iseasy to verify that the solid matrix dis-
solves completely after adimensionlesstime T = 1, so that,
for T > 1, all oxide grains are released into the liquid solu-
tion. In the case 8 < 1 (the consumption of oxide grainsis
slower than the consumption of the solid matrix), it is more
evident that the larger ¢z is (the smaller the average radius
of oxide grains released is) and the faster the increase of
the conversion is (decrease of 1 — X) at short-intermediate
time-scales. For 8 < 1, the apparent overall reaction rate
is faster than that predicted by the shrinking-core model.
For 8 = 1, the sporulation model, at short—intermediate
time-scales, exhibits an increase of the conversion X which
is slower than the corresponding one in the shrinking-core
model and approaches the conversion—time curve of the
shrinking-core model for increasing values of ¢.

In the case of first-order kineticsfor the consumption rates
of the solid matrix and oxide grains (n1 = 1 and no = 1),
the sporulation model must be solved numerically. More
specifically, we adopted a classical finite-volume approach
for solving the population balance Eq. (39), by discretising
the oxide grain radius domain [0, 1] into N = 300 elemen-
tary cells. The resulting system of N ODEs in the N cell

1

08 r

06 r

04 r

(1_X)1/3

02 r

0 N
(B) 0 02 04 06 08 1
T

Fig. 6. Conversion-time curves (1 — X(1))/3 vs. 7 for the sporulation model in the presence of a zero-order kinetics (n1 = n2 = 0) (Egs. (38)
and (39)): (A) B =0.1; (B) 8 = 1. Different curves correspond to different values of the parameter ¢, = 1, 10, and 100 entering the distribution function
U(Fo, 7p) (EQ. (49)). {1 =1, ¢3 =0. The arrow indicates increasing values of ¢,. The dotted line corresponds to the linear behaviour (1 — X3 =1/8
characterising the classical shrinking-core model in the reaction-controlled regime (for a zero-order kinetics).
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Fig. 7. Conversion-time curves X(t) vs. T for the sporulation model in
the presence of a first-order order kinetics (n1 = ny = 1) (Egs. (38)
and (39)) under stoichiometric loading conditions ¢1(0) = v,
20 =vy+z, vi=v2=0a2=1.(A) =01 B) =1 (O
B = 10. Different curves correspond to different values of the parameter
¢2 =1, 10, and 100 entering the distribution function v(7o, 7p) (EQ. (49)).
¢1 =1, {3 = 0. The arrow indicates increasing values of ¢,. The dotted
curve corresponds to the conversion-time curve characterising the be-
haviour of the classical shrinking-core model in the reaction-controlled
regime (for a first-order kinetics) (Eq. (56)).

variables (7o}, (fioi(t) = fio(Foi, 1), Foi = (i = 1/2)/N,
i =1,...,N) together with the ODE describing the time
evolution of 7, Eq. (38), have been integrated by means of
a fourth-order Runge—Kutta a gorithm.

Fig. 7A—C show the behaviour of the conversion-time
curves X (1) versus t for 8 = 0.1 (Fig. 7A), 8 = 1 (Fig. 7B)
and 8 = 10 (Fig. 7C), and for three different values of the

parameter ¢ = 1, 10, 100 entering the distribution function
(o, Fp) (EQs. (48)—50)). The other model parameters are
set to v1 = v2 = fi2 = 1. The initia concentrations of
the fluid reactants A; and A, are set at the stoichiometric
values ¢1(0) = &9 = vy and &(0) = &°° = 1y +
it2, in order to obtain a complete conversion of the ore
particlesand of the oxide grains. The dotted line corresponds
to the conversion-time curve characterising the behaviour of
the classical shrinking-core model in the reaction-controlled
regime (for a first-order kinetics):

dx
o= 3(1 — X)?2B(e2(0) — v1.X). (56)

It can be observed that the sporulation model exhibits
conversion—time behaviour which can be faster (for 8 < 1)
or dower (for B > 1) than the corresponding one of the
shrinking-core model. The influence of the parameter ¢»,
controlling the average radius of oxide grains released in
the liquid solution, is more pronounced for 8 < 1, i.e. in
the case in which the rate controlling step is the dissolution
of oxide grains.

Fig. 7A—C correspond to simulation results for stoichio-
metric loading conditions of fluid reactants. Fig. 8 showsthe
influence of the initia concentration ¢2(0) of the fluid re-
actant A, which participates in the dissolution of the solid
matrix. The other parameters are set to 8§ = 0.1, ¢ = 10.
Curves (a)—(c) show the behaviour of the conversion-time
curves for ¢2(0) = 0.5¢59¢, ¢2(0) = 0.7¢5°¢ and ¢2(0) =
1.5?:§°i°, respectively. The dotted curve corresponds to sto-
ichiometric loading conditions. It is fairly evident that, for
¢2(0) < zgo'C, the ore particle cannot dissolve completely,
so that afraction of the oxide grains remains trapped within
the unreacted core of the ore particles. As a consequence,
this oxide grain fraction cannot be released into the liquid
solution, and the dissolution process does not proceed to the
complete conversion of the oxide.

0.8

06 r

04 r
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001 01 1 10 100

Fig. 8. Conversion-time curves X (7) vs. t for the sporulation model in the
presence of a first-order kinetics (n1 = np = 1) (Egs. (38) and (39)), for
B=01,¢1=1, =10, ¢3 =0, and for different initial concentrations
2(0). (8) &2(0) = 0.5¢5°; (b) &2(0) = 0.7¢39C; (c) &2(0) = 1.5¢3°¢. The
dotted curve corresponds to stoichiometric loading conditions ¢1(0) = v,
20 =v2+ iz i =v2 =12 =1).
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6. Non-uniform radial distribution of metal oxide

In this section we formulate the sporulation model in the
more general setting of a non-uniform radial distribution of
metal oxide within the ore particles. In this case, the ore
particle density pp, and consequently the particle molar den-
sity pp = pp/MW,, are not constant during the dissolution
process.

According to the simplified reaction scheme, Egs. (32)—<34),
the dissolution of the ore particle attains the following
dimensionless form:

Z)p(;p)% = —pp(D (ZE\;EB) &

Pp= %, (57)

where pp(7p) and pp(ip) are given by:

Z)p_(7p) - Pg _ Pp(Fp) = pg _
Po — Pg Po — Pg

/ ’ gn;f;a(;o, 7p) dio,
0

(58)
and p3’ (1) and p3’ (1) represent the average particle density

pp’ (7p) and the average particle molar density p5’ (i), when
the dimensionless ore particle radiusis 7p = 1.

o Pp(F)Am ()2 dF

v
O = T g
AT GALIGA R
av _Jo p P P

The distribution ¥(7o, 7p) Satisfies the integral constraint:

1ot o [P A g
V_,S’ A 47T(rp) drp A v(Fo, rp)érrro dro

VY M) =pg Py’ (D) — pg

- 3,0 — — — ) (60)
VF()) Po — Pg Po — Pg

and controls the radial distribution of metal oxide within the
ore particle.

Let us indicate with My (7p) the weight fraction of metal
oxide embedded in the ore particle up to the radius 7p:

Mo(Fp) = —";((’ 1")) S,
- /_OSV(7p) — Py ng(;p) — Py
= = . 61
@) Po — Pg Po — Pg (61)

Fig. 9 shows the behaviour of Mq(7p) for:

1
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Fig. 9. Radia oxide distribution My (7p) vs. 7 for v(7o, 7p) given by
Egs. (49) and (62) with ¢1 =1, ¢z =1, and ;3 =0and 15. (a) (3= 0;
(b) ¢3 = 15. The dotted curve Mo(fp) = FS corresponds to a uniform
radial distribution of metallic oxide in the ore particle.

1N)(;os ;p) = 1A’(;’o, ;’p)[:
(L) —
r=vot—_=2
Po — Pg

L 2 ;;’A~~/43 o
X f 4 (ry)” drp / V(7o, rp)énro do| , (62
0 0

where D (7o, 7,) is given by Eq. (49) with ¢1 = 1, & = 1.
Curves (@) and (b) correspond to ¢3 = 0 and ¢3 = 15,
respectively. The dotted curve My(ip) = ?g’ corresponds to
a uniform radia distribution of metallic oxide in the ore
particle. It can be observed that, by letting the parameter ¢3
vary intherange[0, 15], the model describesthe localisation
of the metal oxide mainly in the external part (¢3 = 0) or in
the centre (¢3 = 15) of the ore particle.

The sporulation model, for auniform ensembl e of ore par-
ticles and a non-uniform radial distribution of metal oxide,
attains the form:

dip (bﬁ“(l)
de — \pp(Fp)

) @)™, O =1 (63)

on on Py (1)

o e 5 + (pi (;p)) (22 (D" 4272 570, 7o),
7710(70» O) = O’ (64)
c1(v) = ¢1(0) — v1X(0), (65)
C2(7) = €2(0) — v2 X (7) — f12Y(7), (66)
where

L (). 3 iio(Fo, 7) dnF3dFo

X1=1 <_Ol(1) ) I’p(‘L') Vg ,  (67)
Y() = 1-7a(0) (—1 ) ) , (68)
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Fig. 10. Conversion-time curves X(t) vs. t for the sporulation model Egs. (63) and (64) for n1 = np = 1, under stoichiometric loading conditions
¢1(0) = vy, ¢2(0) = v2 + fi2 (v1 = v2 = iz = 1). The distribution ¥(7o, 7p) is given by Egs. (49) and (62) with ¢1 =1, > =1, and {3 = 0 and 15. (A)
B=1; (B) B =10. Curves (a) and (b) correspond to ¢z = 0 and 15, respectively. Curves (8) and (b) are associated with the radial oxide distributions
Mo(7p) curves (a) and (b) in Fig. 8. The dotted lines correspond to the conversion-time curves X (r) vs. v obtained for a uniform ensemble of ore
particles characterised by a uniform radial distribution of metal oxide and such that the (constant) density p, equals the initial average density pg"(l) of

the ore particles.

_pa (Y _ Py ( 1 )
2= <vg 1) po\a® 1) (©9)
where a(7p) is defined by Eq. (61).

Fig. 10 showsthe behaviour of the conversion-time curves
X (1) versus T obtained from the numerical integration of
the sporulation model Egs. (63) and (64) for ny = ny =
1, under stoichiometric loading conditions. The distribution
(7o, p) is given by Egs. (49)«62) with {3 = 1, {» = 1,
and ¢3 = 0,15. Fig. 10A and B corresponds to 8 = 1
and 10, respectively. Curves (@) and (b) refer to ¢3 = 0
and 15, respectively (curves (a) and (b) are associated with
the radial oxide distributions Mo (7p) (8) and (b) depicted in
Fig. 9). The dotted lines correspond to the conversion-time
curves X (t) versus t obtained for a uniform ensemble of
ore particles characterised by a uniform radia distribution
of metal oxide (see Section 5) and such that the (constant)
density pp equals the initial average density pg" (1) of the
ore particles, i.e. (op— pg)/(po— pg) = (p§’' (1) — pg) /(o —
pg) = a(1).

As expected, the conversion X, at short—intermediate
time-scales, exhibits a faster or a slower increase (with
respect to the conversion-time curve for a uniform ra
dia distribution) depending on the value of ¢3: slower for
¢3 = 15 (metal oxide is mainly concentrated within the in-
ner core of the particle), and faster for ¢3 = 0 (metal oxide
is mainly localised in the external shell) This effect is more
pronounced for values of 8 > 1 when the dissolution of
oxide grainsis faster than the dissolution of the solid matrix
(representing the rate controlling step).

7. Analysis of manganiferous ore kinetics

We applied the sporulation model to interpret the dissolu-
tion kinetics of manganiferous ores, discussed in Section 3.

The experimental data depicted in Fig. 2A—C clearly indi-
cate that sulphuric acid acts as a fluid reactant for the disso-
lution of both oxide grains and solid matrix. As discussed
in Section 3, experimental data for pure MnO, particles
(Fig. 1), that the dissolution rate of oxide grain is indepen-
dent of sulphuric acid concentration. Therefore, the reac-
tion scheme is the same as that considered in Section 5,
Egs. (32)—(34), where A1 = glucose, A> = sulphuric acid.
From the overall stoichiometry Eq. (7), we have vy = 1/12,
v2 = 1, whilethe kinetic analysis of pure MnO, particle dis-
solution Eq. (8) suggests n1 = 1.2. The stoichiometric co-
efficient w2 and the kinetic parameter no entering the model
must be determined from the analysis of the dissolution ki-
netics of manganiferous ores.

From granulometric data reported in Fig. 3A—C, we may
reasonably assume that: (i) the initial mixture of ore parti-
cle (Fig. 3A) can be modelled as a uniform ensemble of ore
particles of radius R, >~ 150 um; and (ii) the average radius
ro Of oxide grains (embedded in the ore particle and subse-
quently released in the liquid solution) istwo orders of mag-
nitude smaller than Ry, that isro/Rp € [0.01, 0.03]. The lat-
ter information is extremely useful for setting the functional
form and fixing the parameter value characterising the dis-
tribution function v(ro, rp). We adopted the “ homogeneous’
sporulation model (uniform ensemble of ore particles and
uniformradial distribution of metal oxide within the ore par-
ticle), Egs. (38) and (39), and the distribution v(7o, 7p) iS
given by Egs. (48)—«50) with 1 = 0, ¢3 = 0 and ¢ = 100
(see Fig. 5, curve (e), for the corresponding behaviour of
the weight distribution function mq(ro), showing that the
average radius of oxide grains is two orders of magnitude
smaller than the ore particle radius).

The parameters that need to be determined from the anal-
ysis of experimental data are 6(7) (the characteristic time
used in the definition of the dimensionless time t) which is
afunction of the temperature T, B(T), j12 and n».
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Fig. 11. (A) Conversion-time curves X (r) vs. the rescaled time tA(7) for T = 30°C (@), T = 50°C (O) and T = 70°C (A). The loading conditions
are ¢1(0) = v1 and ¢2(0) = v,. (B) AM(D) vs. T (K) for T € [30, 70] °C. The continuous line represents the Arrhenius-type behaviour (Eg. (70)), with

E/R =7368.2K and A, is such that A(30°C) = 1.

A preliminary analysis of the experimental data reported
in Fig. 2A shows that the conversion—time curves for T =
30°C (@, curve (a), T = 50°C (O, curve (b)) and T =
70°C (A), curve (c)) can be rescaled onto a unique invari-
ant master curve (see Fig. 11A) by introducing the rescaled
time A (7), where A(T) exhibits the classical Arrhenius-type
behaviour:

E
MDD = Ao exp( RT> , (70)
depicted in Fig. 11B.

This observation has two important consequences. (i) the
characteristic time 6(7) can be expressed as6(T) = 6o/A(1);
and (ii) the kinetic parameter 8 is independent of tempera-
ture. By considering that 8 ~ Bo(T)/Bp(T) ~ ko(T)/kp(T),
the fact that 8 isindependent of temperature implies that the
Arrhenius-type dependence of the kinetic constants kp and
ko onthetemperatureis characterised by the same activation
energy E.

Fig. 2A shows the excellent agreement between exper-
imental data and the sporulation model (continuous lines)
withny = 1, ip = 1 and B = 0.043, 6, = 8min. It is
not surprising that 8 « 1, because the short-intermediate
time-scale decay of the conversion, in the case of mangan-
iferous ores, is significantly faster than the corresponding
one in the case of pure MnO, particles (when the classica
shrinking-core model more reasonably applies). Moreover
2 = 1 clearly explains why, for ¢2(0) = vy, the conversion
saturates towards alimiting value Xs. Indeed, ¢2(0) = v2 <
&30 = vy + fi and the sulphuric acid is alimiting reactant.

The “homogeneous’ sporulation model is capable of a
quantitative prediction of the influence of a surplus of sul-
phuric acid (see Fig. 2B) and of glucose (see Fig. 2C) in
all the temperature range T € [30, 70] °C. Fig. 2B shows
the excellent agreement between model predictions (contin-
uous lines) and experimenta data for T = 30, 50, 70°C,
¢2(0) = 1.3v2 and ¢1(0) = vy. Fig. 2C shows the excellent
agreement between model predictions (continuouslines) and

experimental datafor 7 = 30 and 70°C, ¢1(0) = 1.3v1 and
¢2(0) = vo. Dotted curves and open circles represent model
predictions and experimental data, respectively, for stoichio-
metric loading conditions for glucose.

8. Concluding remarks

The sporulation model is a versatile structural model
specifically suited to describing the dissolution kinetic in
leaching processes involving non-porous ore particles. It
accounts explicitly for intraparticle heterogeneity by de-
scribing the interplay between the dissolution kinetics of
the main solid reactant (e.g. metal oxide) and the dissolu-
tion/fragmentation of the solid matrix (gangue). The core
of the model is the choice of the grain distribution v(rq, 7p)
which controls the average particle radius of the released
oxide grains and the radial distribution of metal oxide
within the particle.

The “homogeneous’ sporulation model, developed for a
uniform ensemble of ore particles and constant particle den-
sity, has been successfully applied to the analysis of disso-
[ution kinetics of manganiferous ore particles which differs
significantly from the dissol ution kinetics of pure MnO; par-
ticles.

The sporulation model can be easily generalised toinclude
the effect of polydispersity of the solid mixture, of the ore
particle fragmentation (see Section 4) and of a non-uniform
radial distribution of solid reactant within the ore particle
(see Section 6).
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